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Abstract - The condensation of vapor within the expanding plume produced by ns-laser ablation is discussed 
within the frame of Zeldovich and Raizer theory of condensation. The calculations have been done for the Si vapor. 
It is shown that the size of clusters formed during the condensation is very small because of fast expan-sion of the 
plume and quenching phenomena. The average cluster radius is calculated for different temperatures and densities 
of initial plume and it is typically of the order of few nanometers. The generalization of the theory is made for 
inhomogeneous plume where the rates of nucleation as well as condensation times are different for different parts 
of the plume. As a result, the distribution in cluster’s size appears. Nevertheless, this distribution function is very 
sharp for the plume expanding in vacuum. For the clusters moving together with vapor one can distinguish three 
different waves propagating through the plume: (1) wave of saturation, where the vapor becomes saturated, (2) 
supercooling wave where the highest supercooling is reached, and (3) the quenching wave. Parameters for these 
waves are calculated.  The possibility of oscillation phenomena during condensation is discussed. 

 

1. INTRODUCTION 
     The physics of nanoclusters should be attributed to 
one of the most intensively developing branches of 
modern physics. The nanoclusters occupy an 
intermediate position between the quantum objects 
(atoms, molecules) and macroscopic objects, i.e., bulk 
materials. Thus, many properties of nanoclusters differ 
from both, the quantum objects and bulk materials. This 
is of great practical and scientific interest [1-3]. The fast 
development of this scientific brunch is caused by 
creation of reliable methods of cluster formation, 
including condensation of vapor during fast expansion of 
pulsed laser ablation products.  The latter method 
permits to generate clusters of any materials with sizes 
typically by order of 10 - 1000 Å  [1-6]. 
    There is an important problem related to control of 
cluster size distribution produced by laser ablation. In an 
ideal situation it is desirable to form monosize clusters. 
with very narrow size distribution. Nevertheless it is not 
possible to do so for principal reasons – clusters of 
different sizes are forming during the expansion of 
inhomogeneous plume. The recent paper [7] considers 
that the distribution function arises due to cluster 
coalescence caused by collisions between the clusters. 
Thus, the authors of  [7] modeled the cluster growth on 
the basis of Lifshitz - Slyozov theory (see, e.g. [8]).  
    Meanwhile, it is easy to estimate that for the typical 
conditions of nanosecond laser ablation of Si and evap-
oration in vacuum, the collisions between clusters are 
very rare, and coalescence is unimportant. We have also 

mentioned that a long duration stage of very slow cluster 
growth exists before the coalescence stage. During this 
stage the distribution function is “frozen” (see, e.g. [9]).  
    Within the present paper we considers that 
coalescence is unimportant and discuss another effect 
related to the formation of distribution function due to 
the difference in condensation time in different parts of 
the plume. Roughly speaking, big clusters are formed 
within the center of the plume, while the smallest 
clusters are formed near the plume edge. For the 
theoretical analysis we used Zeldovich and Raizer (ZR) 
theory of condensation [10 – 12]. This theory refers to 
the initial stage of condensation process in contrast with 
Lifshitz - Slyozov theory which is applicable for the last 
stage of the condensation process (see, e.g. discussion in 
[8]). 
    An important part of the theory is the description of 
the nuclei production in supersaturated vapor. This 
description can be done on the basis of Zeldovich kinetic 
equation [10], which describes the production rate of 
overcritical nuclei (see also [8, 13]).  Raizer [11] applied 
this kinetic equation (together with equation for the rate 
of droplets growth and the adiabatic equation in the 
condensation region) for the analysis of the problem of 
cosmic dust production during a collision (and further 
vaporization) of a large meteorite with the surface of a 
planet without an atmosphere. It was found that the 
degree of condensation, number of clusters and their size 
strongly depend on the velocity of the vapor expansion, 
which, in turn, depends on the initial size of the vapor, 
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evaporated mass, and internal energy. It was also shown 
in [11, 12] that condensation stops because of the 
quenching phenomenon.  
     Although ZR theory does not contain any fitting 
parameter, it is applicable (with small corrections) for 
the description of condensation within appreciably 
different conditions (it is sufficient to mention a 
tremendous difference, sixteen orders of magnitude, 
between evaporated mass in the case of the meteorite 
discussed in [11] and typical evaporated mass in laser 
ablation experiments and also a large difference in many 
other parameters).  
     Applying the ZR theory, we introduce a few 
corrections related to the peculiarities of the vapor plume 
produced in laser ablation experiments. First, we discuss 
the cooling rate of vapor, which is several orders of 
magnitude higher than in [11, 12]. Thus, all the 
important events (formation of the condensation region, 
production of nuclei, etc.) occur during the nonlinear 
stage of expansion, while in [11] calculations have been 
done for the linear stage (inertial expansion).  For this 
reason, we discuss a more general description of the 
plume expansion. 
     Second, the nuclei produced in laser ablation plume 
have the size near the critical, r ≈  rk. Thus, it is necessary 
to include the influence of curvature into the equation for 
droplet growth. It was not very important in [11], where 
drops had a big size, r »  rk. We also made improvements 
in the procedure of the initial conditions calculation 
(initial condition for the droplet growth is not strictly 
defined within ZR theory). 
     The third correction refers to the estimation of the 
quenching time, t = tq.  In Raiser’s paper [11] the 
criterium θ q T/ ≈ 1 was used for this purpose, where θ  
is supercooling, T  is temperature, and q is the heat of 
vaporization (in Kelvin). The physical meaning of this 
criterium is a strong disturbance in thermodynamic 
“equilibrium” between the deposition and evaporation 
processes. We use another estimation, which shows the 
moment of time when the collisions stop within the 
expanding vapor. This criterium yields approximately 
2.5 times higher value of tq, but it does not influence 
strongly the final size of condensed droplets (difference 
smaller than 10 %). However, this difference can be 
easily detected experimentally (for example, with the 
help of time-of-flight mass spectroscopy [14]). 
     Raiser’s examination was developed for homogeneous 
plume. It can be applied also to inhomogeneous plume 
under the assumption that the condensed droplets are 
moving together with vapor. This latter permits one to 
estimate the distribution function of condensed particles, 
which is done in the present paper. 
    The paper is organized as follows: We discuss the gas 
dynamics of the plume expansion in Section 2 and the 
mentioned modifications introduced within ZR theory in 
Sections 3-5. Then we analyze Si-nanoclusters formation 
within Si-vapor plume produced in vacuum by ns-laser 

ablation (Section 6).  The main results of these studies 
are summarized in the conclusion (Section 7).   
  
 
2. GAS DYNAMICS OF THE PLUME EXPANSION 
 
     Within the paper of Raizer [11] the simplified model 
of spherical plume expansion was used, namely, the 
averaged vapor density was taken in the following form: 
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where M is the total mass of the vapor, R0 is initial radius 
of the plume, and u E M= 2 /  = const is the velocity of 
expansion, related to the initial internal energy E of the 
plume. 
     More accurate description can be made on the basis of 
the special solution of the gas dynamics equations (see, 
e.g. [15]), which yields the following law for isentropic 
expansion 
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where u0 is the initial velocity of the plume expansion. 
This solution holds for monatomic gas with adiabatic 
exponent γ = =cp cv/ 5 3. The general solution for 
arbitrary γ  is given in the Appendix. 
      At the later stages of expansion from (2) follows the 
linear law (inertial expansion). The density, specific 
volume, pressure and temperature profiles within the 
plume are given by 
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where ( )ξ = r R t/  is the Lagrangian coordinate (0 ≤ ξ 
≤1) ,  Rg  is the gas constant, and  µ  is the atomic weight 
of the vapor. 
     We shall consider that small droplets of condensed 
vapor move together with the vapor.  For this case, the 
condensation process can be discussed for each fixed 
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Lagrangian coordinate ξ independently. Here, we assume 
that the condensation process does change the expansion 
dynamics of the plume. For arbitrary value of ξ one can 
write the change of specific volume in the following 
form: 
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     This law will be used in the subsequent calculations. 
 
3. THE SATURATION AND QUENCHING WAVES 
     The condensation process starts when the plume 
becomes saturated and stops when the plume starts to 
expand in collisionless (free-flight) regime. Within the 
inhomogeneous plume, saturation and free-flight regimes 
are reached for each point in different moments of time, 
i.e. saturation and quenching waves propagate through 
the expanding vapor. 
     Before the condensation starts, the expansion of the 
plume occurs along the Poisson adiabat, PV constγ = . It 
is convenient to write this equation in (V, T) coordinates, 
as TV constγ − =1 . Thus, for monatomic gas  
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     This expansion continues up to the moment when the 
Poisson adiabat intersects the saturated vapor adiabat 
given by Clapeyron-Klausius equation [16]  
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where q is the heat of vaporization given in Kelvin, Ts = 
300 K,  Ps  is preexponential factor. This equation in 
(V,T) coordinates is given by 
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where ssg P/TRB µ=  . 
     Condensation starts at the moment t = tc, when the 
vapor is cooled up to the temperature T = Tc . This 
condensation temperature follows from (8) and (10). It is 
given by ( )aqTc Φ= , where ( )aΦ  is the smaller root of 
the transcendental equation (the second, larger root, has 
no physical sense): 
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     Parameter a is typically small, à  « 1. This permits to 
write the approximate solution of (11) as  
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Fig. 1.  Condensation isotherms Tc on the plane of parameters 
T0 , V0 . 
 

    It should be noted that Tc depends on initial 
parameters V0

  and T0. At the same time it does not 
depend on Lagrangian coordinate ξ, i.e. we obtain the 
same con-densation temperature for different parts of the 
given plume. This condensation temperature Tc is shown 
in Fig. 1. Parameters of silicon [17] which have been 
used in calculations are presented  in Table 1. 
     The moment tc when condensation starts, depends on 
the Lagrangian coordinate, i.e. different parts of the 
plume start to condense at different moments. This 
moment of time can be found from the equation  
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     According to (13), the saturation wave propagates 
through the plume from its periphery to the center. The 
boundary of this wave  r = rc (t)  moves according to 
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     The plot of this function is shown in Fig. 2. We used 
for calculations the parameters of vapor given in Table 2.  
 
Table 1.  Parameters of Si [17], which have been used in cal-
culations. 
 

Parameter Value 

Density of condensed phase, ρc  [g / cm3] 2.4 

Atomic weight,   µ  [g / mole] 28 

Heat of vaporization,   q [K] 50615 

Normalization temperature,  TS [K] 300 

Preexponential factor, PS [ atm ] 6.72 × 106 

B,  [cm3 / g ] 1.31 × 10-4 

Surface tension, σ  [erg / cm2] 750 

Cross-section of collisions, σg
  [cm2] 1.72×10-15 

Melting temperature, Tm  [K] 1685 
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Fig. 2.   Propagation of saturation, quenching and “ejection” 
waves through the Si-vapor plume with parameters of vapor 
given in Table 2. 
 
 
  Value of u0 was measured experimentally [18]. For 
these parameters Tc = 4500 K  (the corresponding point 
is shown in Fig. 1). Propagation of saturation wave 
strongly depends on initial velocity of the plume 
expansion, u0 .  For example, for u0 = 0 saturation wave 
reaching point r = 0 (i.e. the whole plume becomes 
saturated) at the moment t = 231 ns, while for u0 = 6×105 
cm/s this time is 40 ns. Also, we note that for the profiles 
given by (3) - (6), part of the plume with r > 0.6 R0 is 
situated within the region of saturation from the initial 
moment of time, t = 0.   
     Now we should find the point of time when the 
condensation stops due to the so-called “quenching 
effect”. It occurs because the collisions within the 
expanding vapor will stop at some stage of expansion 
(see more detail in [12]). A careful examination of this 
quenching effect needs the solution of Boltzmann kinetic 
equation.   
      We shall give the simplest estimation of this 
quenching time by a different way.  Namely, to find the 
boundary r = rq(t) between the collision (hydrodynamic) 
and collisionless (free-flight) regions of the plume we 
use the criterium l∇v  = vs . Here l  =  1/σg N  = m/σg 
ρ(r)  is the mean free path within the hydrodynamic 
region (σg  is cross-section of collisions), and vs is the 
velocity of sound at the given point. The meaning of  this  
 
Table 2. Initial parameters of the plume, which have been used 
in calculations. 
 

 
Initial parameters of the plume Value 

Initial temperature, T0   [K] 7000 

Initial specific volume, V0    [cm3/g] 300 

Initial size, R0    [cm] 0.1 

Initial pressure, P0     [atm] 68.4 

Initial velocity of expansion, u0  [cm/s] 6×105 

criterium is rather simple. We consider that collisions 
exist until the neighbor particles (separated by l  
distance) is much less than the sound velocity (i.e., the 
mean molecular velocity). Substituting the value of the 
hydrodynamic velocity gradient, ==∇ RR /&v  
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dΨ
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we find the equation for the boundary of quenching wave  
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    It can be seen from (16) and (2) that at u0 = 0 the 
collisionless region spreads from the outer part of the 
plume r = R0 (at t = 0). With u0 > 0, the outer part of the 
plume spreads from the beginning in free-flight regime. 
Finally, at u0 > uk =  R0 / 2 t k  the whole plume expands 
in collisionless regime. The critical velocity, uk, is 
typically very high for developed ablation regime; 
however, it can be reached for subthreshold fluences 
whem the evaporated mass M is extremely small. Our 
calculations show the strong influence of the initial 
velocity u0 on the quenching process. The whole plume 
becomes collisionless at t = 5963 ns with u0 = 0  and at  t 
= 2071 ns  with  u0 = 6×105 cm/s. 
     The propagation of the saturation and quenching 
waves through the plume is shown in Fig. 2. The picture 
is given in Euler’s coordinates, the border of the 
expanding plume is shown in Fig. 2 as well. It can be 
seen from the figure that linear stage of the plume 
expansion starts at around 700 ns; thus, all important 
events within the plume occur during the nonlinear stage 
of expansion.  
     The third wave shown in Fig. 2 refers to the trajectory 
where the maximum of supersaturation is reached. At 
this condition the nuclei are formed (“ejected” into the 
saturated vapor). The equation for this wave will be 
obtained further on [see (37)]. 
 

4. THERMODYNAMICS 
OF TWO-PHASE REGION. 

 
     When the vapor becomes saturated and condensation 
starts, the matter within the plume is presented by two-
phase system “liquid + vapor”. One can denote the 
degree of condensation, x, as the ratio of the number 
density of molecules in the condensed phase to the total 
number density. If one supposes there is a 
thermodynamic equilibrium within the system, then the 
evolution of the system follows to equilibrium adiabat of 
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“two-phase” region. This adiabatic can be found from the 
equations ([11, 12]):  
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     Equation (17) presents the energy balance for 
adiabatic process; here, cv and cl are the heat capacities of 
vapor (at constant volume) and liquid.  For the problem 
under consideration one can put cv  =  3Rg  / 2µ   and  cl   

=  3Rg /µ . Equation (18) presents the saturation adiabat 
(10) where the specific volume of vapor is replaced by a 
specific volume of the original material. The system of 
equations should be solved together with initial condition  
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                                                            or      x T Tc= = 0. 

     It is convenient to exclude specific volume V from 
(17)-(19) and introduce new variable: y = q/T (yc  = q/Tc  
) instead of the temperature T. Then the problem under 
consideration is reduced to linear differential equation 
[19] 

            
21

31
21 /y

y/
/y

x
dy
dx

−
−

=
−

+  ,   0== cyyx .       (20) 

  

     Integration of (20) yields the equilibrium degree of 
condensation within the vapor, 
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     One can find the adiabat of thermodynamically equi-
librium two-phase system substituting (21) into (18),  
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     We denote the temperature along the equilibrium 
adiabat as equilibrium temperature Teq. If the specific 
volume changes versus time according to (4), then the 
variation of equilibrium temperature Teq (t) can be found 
from (22): 
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     The variation of equilibrium degree of condensation 
is given by (21) where xeq  (t)  = xeq  [Teq  (t)]. Using 
relation (7) one can rewrite the adiabatic equation (17) in 
the following form 
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     It is easy to see that the functions Teq(t)  and  xeq(t) 
ful-fill (24)automatically. Thus, for sufficiently slow 
expan-sion, when, according to thermodynamics, x(t) → 
xeq (t), the evolution of the system occurs near the 
equilibrium phase trajectory defined by (22). For 
sufficiently fast expansion the phase trajectory can 
deviate from the equilibrium one. The similar 
phenomena can be seen quite often in nonequilibrium 
chemical kinetics [20]. 
     One can see from (21) that at unrestricted vapor 
expansion, at the conditions close to equilibrium (i.e., 
when this expansion is realized rather slowly), the vapor 
should condense completely, 10 →→Teqx . At the case 
of fast expansion, the complete condensation does not 
occur due to quenching effect, i.e., qxx → , where xq < 1.  
     The formal solution of  (24) with x = xq  = const  
yields the “quenching adiabate” 
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which coincides with the Poisson adiabat with a renor-
malized adiabatic exponent. Thus, one can say that the 
quenching process goes along the Poisson quenching 
adiabat. However, this is rather formal, because the 
equation (24) is not valid to describe the collisionless 
vapor.  It is more consequent to describe this effect in 
terms of “frozen temperature” Tq which corresponds to 
averaged kinetic energy of free-flight particles within the 
vapor. 
     In collisionless regime the clusters cooling rate is 
mostly determined by radiation heat loss. This cooling is 
quite fast for small clusters. For this situation, discussed 
further in calculations, the time necessary for cooling of 
15 Å  cluster from the quenching temperature Tq = 2185 
K to the melting temperature Tm  comprises  ∆ t  ≈ 370 
ns. It means that small clusters are deposited typically in 
solid state. 
     The equilibrium temperature Teq(t) (23) and the tem-
perature T = Tp (t) (6) are shown in Fig. 3  together with 
calculated temperature T(t). 

 

 5. KINETICS OF CONDENSATION 
 

     According to (2) and (6) the cooling rate at the 
condensation point is given by 
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Fig. 3.   Dynamics of the condensation process at adiabatic 
vapor expansion at ξ = 0: (a) Temperature T(t) of  Si-vapor.  
Symbol  TP  denotes the temperature along  the Poisson adia-
bat (6),  and  Teq  is the equilibrium temperature from equa-tion 
(23). (b) Supercooling θ = θ (t) from calculations (solid line). 
The dotted curve presents dependence of  T/q  versus time. (c) 
Degree of condensation x = x(t). Symbol xeq denotes the 
equilibrium degree of condensation (21). 
 
 
     For the example shown in Fig. 3, this value is by  
order of 1011 K/s. It is evident that at such a high cooling 
rate vapor continues to expand during some time “by 
inertia” along the Poisson adiabat. As a result, vapor 
becomes oversaturated and the nucleation starts.  Later 
the supersaturation drops because of the formation of 
critical nuclei and their further growth. The change of 
supersaturation is caused by the interplay between the 
rate of cooling (due to the work of vapor expansion) and 
the rate of heating (due to latent heat of condensation). 
     The condensation kinetics is governed by the value of 
supercooling (see, e.g., [12,13]): 

                  θ =
−Teq T

Teq
 .          (27) 

 
     We can write now the kinetic equations assuming that 
for the given Lagrangian coordinate all the condensed 
clusters (nuclei) have the same size. 
     Let us consider that each cluster consists of g = g(t) 
atoms. We denote ν = ν (t) the number of condensation 
centers (per atom of vapor). Then the degree of 
condensation is given by 
 
                  ( ) ( ) ( )x t t g t= ν  .          (28) 
 
     Correspondingly, the rate of condensation can be 
presented as 
 

      
dt
dg

dt
dg

dt
dx

ν
ν

+=  ,     0== cttx  .         (29) 

 
     The first term in (29) describes the change of con-
densation due to the formation of nuclei, while the 
second one describes the change of condensation caused 
by cluster growth. Once again we emphasize that the 
equations (28), (29) are written for fixed Lagrangian 
coordinate.  
     The rate of nucleation can be described by solution of  
Zeldovich’s kinetic equation [10]. The stationary 
solution of this equation (see, e.g. [8]) yields 
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     Here, we use notation σ  for the surface tension. Pre-
exponential factor in (30) is proportional to density of 
vapor. The equation (30) differs from the Raizer 

equation by factor ( )( )1 1 2 3 2 3 2− − −x ξ Ψ . 

     Ions may play an important role at the condition of 
high supercooling, θ >θk, where θk is critical supercool-
ing for charged particles [11]. At θ  > θk the charged 
complexes of all sizes exhibit a tendency to grow without 
limit. For Si θk = 0.134. At θ → 0 the difference in 
nucleation of charged and uncharged particles disappears 
[11]. Thus, as a first approximation, one can neglect the 
influence of ionization onto the nucleation process (if θ  
is smaller and not very close to θk ) .   
     The equation for growth of cluster can be written 
under the assumptions used in [11] that the growth of 
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nuclei occurs in kinetically controlled regime, accommo-
dation coefficient is equal to unity, and temperatures of 
gas and droplet are equal. Then   
 

            ( )ejdjr
dt
dg −= 24π  ,         (32) 

 

where the flux of deposited atoms is given by jd = 

Tnv
4
1 ,  

m
n ρ

=  is the number density of atoms in gas, vT 

= 
m

TBk
π

8
  is the arithmetic mean velocity (see, e.g. 

[21]). 
     The flux of evaporated atoms can be presented in the 
following form 
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where vl  is preexponential factor in evaporation law, 

ln = 
m
lρ

 is the number density of atoms in condensed 

phase, term 1 0−



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
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 takes into account surface tension 

effect, 
qBk

r ωσ2
0 =  ,  ω = lρm  is the volume per atom in 

liquid.  The radius of critical nucleus is given by 
rk r= 0 / θ .  For nucleus of critical size, the balance of 
evaporated and deposited fluxes should take place. This 
condition permits us to exclude factor llvn  within the 
equation for droplet growth, which is transformed to  
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     This equation is different from the equation which has 
been used in [11] by general factor 1/4 (probably, 

misprinting) and factor 1−








rk
r

, which describes the 

difference in evaporation from spherical and flat 
surfaces. This factor was not very important in [11], 
where droplets had a big size r »  rk, but it is very 
important for the problem under discussion where sizes r 
and rk  are comparable.  

     Using  r
mg

=










3
4

1 3

π ρl
and formula (3) for the gas 

density we can rewrite (34) in the following form  
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     The initial value of g0 and “ejection time”, te, should 
be found in a self-consistent way, using the assumption 
that cluster formation starts at the moment when 
supercooling reaches its maximum, and the smallest 
critical nuclei are ejected at this moment. Thus,  g0  = 
g(te) = gmin  = (α/θmax)3  »  1, where gmin  is the number of 
atoms within the smallest critical nuclei.  Remember, 
that Zeldovich’s kinetic equation considers g as a 
continuous variable, and applicable just for macroscopic 
description, i.e. g »  1. 
     To find time te we used the following procedure: 
During the initial stage, temperature T follows very close 
to Poisson adiabat T = Tp (t), see (6), and one can put the 
supercooling ( ) ( )teqTtpTp /1−=θ . Degree of condensa-
tion is also very small, and one can neglect x within 
equation (24). The latter yields the moment te, when the 
super-cooling reaches extremum, ( ) 0== ettdtdθ .  This 

consideration yields the transcendental equation for te: 
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     The derivative  (dν/dt )  in (37) is taken along the 
Pois-son adiabat,  T = Tp . For the given example, this 
equation yields for the center of the plume te  = 52.6 ns  
and  gmin  ≈ 16.5 atoms. The plot of the function r = r(te) 
is shown in Fig. 2. It corresponds to the propagation of 
the “nuclei ejection” wave.  
     It is also convenient to recalculate the other initial 
conditions to the moment te: 
 

            ( )etpTettT == ,    g0  = g(te) = gmin ,  

                ( )dttpTT
et

ct
dt
d

ett =∫===
ν

νν 0  ,        (38) 

and           000 νgxettx === . 

 

     Thus, for the description of the condensation process 
we use the system of four ordinary differential equations 
for four unknown functions ( ) ( ) ( )T t x t t, , ν  and g(t) 
together with corresponding boundary conditions at the 
point in time t = te . 
 
6. NUMERICAL SIMULATION AND DISCUSSION  
 
     It should be noted that the “prehistory” of the system, 
for tc < t < te , can not be described well by the model. 
Calculations with initial condition g0 < gmin show the 
dissociation of subcritical nucleus, while at g0 > gmin it 
starts to grow. At the limit case g0 = gmin we observed 
that an effect of the numerical instability perturbations 
pushed the system either into the dissociation or  conden- 
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sation regions. In order to relieve these instabilities, and 
taking into account that the Zeldovich equation describes 
the production of slightly overcritical nuclei we use the 
following approximation:  g0 = gmin + 1.5, i.e. g0  = 18 for 
ξ = 0.  
     The dynamics of the temperature T(t), supercooling 
θ(t) and the degree of condensation x(t) from numerical 
solution of the system is presented in Fig. 3. Integration 
was done with “Mathematica” software package [22]. 
The temperature T(t) (Fig. 3a) firstly follows along the 
Poisson adiabat, then, after the start of nuclei formation 
it approaches the equilibrium temperature Teq, and finally 
deviate  from Teq  during the quenching. This behavior is 
typical for ZR theory. 
     Correspondingly, the supercooling (see Fig. 3b) 
reaches its first maximum at t = te, then it falls down, and 
finally increases up to the quenching time t = tq.  At final 
stage of condensation, the supercooling reaches its 
critical value θk, where condensation on ions becomes 
dominant. It does not influence strongly the final size of 
nuclei, because it takes place within the region 

1>T/qθ .  For the given example time  tR, which 

corresponds to 1=T/qθ , is ≈ 830 ns.  As was 
mentioned above, this time t = tR  was used in [11] as a 
criterion for stopping condensation. Strictly speaking, for 
θ q T/ > 1 the kinetic equation for droplet growth should 
be modified and the effects related to the difference in 
temperatures of the droplet and vapor should be taken 
into account. We have noted that this condition 
θ q T/ > 1 is also fulfilled at initial stage of the process 
(after nuclei ejection). A careful examination of  the case 
θ q T/ > 1 needs solving of Boltzmann equation. The 
stationary solution of the problem was done in [23] but 
we did not find the general solution for the non-
stationary situation.  
     Another important effect which can be seen in Fig. 3b 
is the oscillation in supercooling, which occurs at t > 
1000 ns. This effect was not mentioned in [11], although 
the physics of this effect is rather simple. During the 
increase of supercooling, the rate of nuclei production 
and liberation of latent heat increase. At some 
conditions, the heat release may overcome cooling 
caused by the plume expansion. It leads to oscillation 
phenomena. These oscillations are very pronounced 
within certain region of  parameters T0 and V0  (for 
example, at T0  = 9000 K and V0 = 300 cm3/g ).  If the 
amplitude of these oscillations is sufficiently high, then a 
new portion of nuclei is ejected during the condensation. 
Their further growth leads to the production of clusters 
of different size. A detailed discussion of these 
oscillation effects in condensation will be published 
elsewhere. 
     Change of the degree of condensation, x, versus time 
is shown in Fig. 3c. It is shifted to the lower value 
compared to equilibrium one, x < xeq. Although the final 
value, x = 0.33, is close to those obtained in [11] for iron 
meteorite (x = 0.4), there is a large difference in the 
number and size of clusters due to a significant 
difference in cooling rates. These characteristics for Si -
vapor are shown in Fig. 4.  
     It can be seen from Fig. 4a that the number of clusters 
is practically a step-like function. Such behavior is in 
good agreement with the assumption that clusters within 
the vapor are practically of the same size (for the given 
Lagrangian coordinate). A cluster starts to grow from 17-
atom nuclei and finally it contains approximately 880 
atoms. For a comparison, the average number of atoms in 
the cluster which was found in [11] was ≈ 1010 .  
     The radius of a growing cluster versus time is shown 
in Fig. 4b. From the figure we can see that a long stage 
of condensation occurs with r ≈ rk, where the effect of 
curvature is important. The final size of cluster for the 
given example is close to the minimal size of Si - clusters 
(diameter 1-3 nm), obtained experimentally at low He 
background gas pressure [4]. The resulting size of the 
forming cluster depends on the initial parameters of the 
plume, its mass, volume and temperature. The plots 
given in Fig. 5 illustrate the dependencies of the cluster 
size on the plume temperature and specific volume.  
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Fig. 5.  Number of atoms within the cluster versus tempera-ture 
(triangles, upper axis)) and density squares, bottom axis).  
 
 
 
     Although one can see from the calculations that the 
cluster size falls down with an increase of the 
temperature (at fixed specific volume), it is difficult to 
realize this experimentally, for example, by a variation of 
laser parameters. Indeed, the increase of laser fluence 
leads to an increase of T0 but it leads simultaneously to a 
decrease of V0, i.e. the compensation effect takes place. 
Thus, to investigate the optimal laser control of the 
cluster formation one should solve the laser ablation 
problem (to find parameters T0, V0, etc.) together with the 
hydro-dynamic problem of vapor condensation. 
 
     In our calculations, we did not find any strong 
influence of the change of the surface tension, σ, on the 
rate of cluster formation (this effect was mentioned in 
[7]). From our point of view, the drastic change of the 
rate of the cluster growth is related not to the surface 
tension value by itself but to the above-mentioned 
sensitivity of the growth kinetics to the initial conditions 
(see Fig. 4b). We should emphasize that during the size 
evolution, nuclei should overcome the “narrow throat” of 
critical size near the maximum of oversaturation.  
 
     The calculations given above were made for the 
center of the plume, ξ = 0. The calculations were 
performed by the same way for arbitrary Lagrangian 
coordinate. This calculation shows that the cluster size 
moving along the Lagrangian coordinate from the plume 
center to the plume edge decreases, while the number of 
clusters (per atom) increases. Thus, the degree of 
condensation from equation (28) varies slowly along ξ, 
but the decrease of the condensation also was obtained at 
the plume edge. To calculate dependencies ( )g ξ  and 

( )ν ξ  near the plume edge we use a smooth extrapolation 
of ( )g ξ  and ( )ν ξ  by the best fitting cubic polynomial 
functions. 
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     From ( )g ξ  and ( )ν ξ  we plot the cluster size distribu-
tion function f(r) (Fig. 6).  The number of clusters pro-
duced within the interval dξ is given by 
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Here, dr/dξ < 0;  thus,  F(r) is positive.  This distribution 
function has the usual meaning: F(r)dr shows the proba-
bility to find clusters with sizes between r and r+dr. The 
distribution function F(r) is normalized to the total 
number of clusters, N, produced during the condensation: 
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     For the given example N = 5×1013 clusters. Instead of 
F(r) we use the normalized distribution function, f(r) = 
F(r)/N.  One can see from Fig. 6 that the obtained 
distribution function is extremely sharp. The half width 
at half maximum of the distribution function is 
∆(2r)FWHM  ≈ 0.1 Å .  
     We have to note that in most of experimental works 
(e.g. [4, 6]) the distribution function of Si clusters shows 
a significant broadening. The high rate of Si clusters 
generation during these experiments was observed 
during laser ablation of silicon into the background gas, 
which change the expansion dynamics.  
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     However, in our approach the distribution function 
also can be wider under the conditions when the 
pronounced oscillations in condensation take place or in 
the case of plume expansion into the surrounding media 
or in the case when the plume is asymmetrical (non-
spherical). Analysis of these factors is out of the frame of 
the presented paper. We have only noted that the analysis 
of the asymmetrical 3D plume expansion can be done 
similarly to [24]. 
 

7. CONCLUSION 
     In this paper we discussed the peculiarities of fast 
condensation of vapor and nanocluster formation within 
the plume induced by pulsed laser ablation. The 
generalization of the Zeldovich-Raizer theory is done for 
inhomogeneous plume. The restrictions of the theory are 
discussed as well. 
     The calculations were made for Si-vapor plume 
produced at typical conditions of excimer ns-laser 
ablation. Results of the investigation can be summarized 
as follows: 
     (1) The typical cooling rate within the laser produced 
plume is very high, by the order of 1011 K/s. Thus, the 
main events in the condensation process (formation of 
the condensation region, production of nuclei, clusters 
growth) occur during the nonlinear stage of the plume 
expansion. This stage was described by the particular 
solutions of gas dynamics equations. Important 
parameters governing the expansion are initial plume 
size, total evaporated mass, internal energy, and initial 
velocity of expansion, u0. In our calculations we used the 
experimental value u0 = 6×105 cm/s . 
     (2) Three waves propagate through the expanding 
plume: (a) wave of saturation, (b) supercooling wave, 
where the nuclei are ejected; and (c) the quenching wave, 
where the condensation stops. We found the basic 
equations for the propagation of these waves. 
     (3) At parameters used in calculations, clusters starts 
to grow from 18 atoms (within the critical nuclei) to 880 
atoms as final, which corresponds to cluster diameter ≈ 
30 Å . The significant stage of the cluster growth occurs 
near the critical radius; thus, effects related to nuclei 
curvature are very important.  We show that the size 
distribution function of clusters is extremely sharp. For 
the spherical plume which expands into vacuum the half 
width at half maximum of the distribution function is 
(2r)FWHM  ≈ 0.1 Å . The experimentally observed 
broadening of the size distribution function [4] is 
probably determined by the asymmetrical plume 
expansion. 
     The studies of the dependence of the cluster size 
versus the initial plume temperature and density show 
that for the fixed density of evaporated atoms, clusters 
become smaller at higher temperature T0.  
     (4) We demonstrate the possibility of oscillation 
phenomena in condensation and we show that within 

some region of parameters these oscillations can produce 
clusters of different sizes. 
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APPENDIX 
Special Solution of Gas Dynamic Equations 

  
     The spherical plume expansion is described by solu-
tion of gas dynamics equations 
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where ρ, P and v are the density, pressure and velocity 
within the vapor, and γ  =  cp /cv  = const is the adiabatic 
exponent. 
     The self-similar isentropic solutions are sought in the 
following form (see, e.g. [15]) 
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where normalization constants I1  =  I1 (γ)  and  I2  =  I2 (γ)  
are determined from the conditions of mass M  and 
energy E conservation, 
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where  Γ(x)  is the gamma-function [25]. 
     Substituting the distributions (A.4) - (A.6) into the set 
of gas dynamic equations, one can easily find that the 
con-tinuity equation (A.1), as well as the entropy 
conserva-tion equation (A.3), are fulfilled identically. 
The Euler’s equation (A.2) is transformed into an 
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ordinary differential equation which describes the 
motion law for expanding plume boundary 
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     The first integral of this equation is similar to energy 
conservation law in classical mechanics  
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     The further integration of this equation yields the 
solution in the form of inverse function t = t(R). This 
solution is represented through the hypergeometric 
function 2F1(a, b; c; z) [25], where parameters a, b and c 
are  
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     The final formula is given by 
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     Here we used the nondimension variables  
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     The function t* = t*(R*) depends on two parameters: 
the adiabatic exponent, γ,  and the initial velocity of 
plume expansion, u*. The behavior of this function is 
shown in Fig. 7. 
     It is easy to see directly from (A.9) that the velocity of 
expansion tends to constant dR/dt ∞→u  for sufficiently 
extended time (inertial stage of expansion), where 
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Fig. A.1.   The dependencies R*   =  R* (t* ) for different values 
of parameters γ  and  u*  (according to (A.11)).   Three curves 
with γ =  5/3  (solid),  7/5  (dash) and  9/7  (dots)  are shown 
for three values of velocity u*   =  0, 1, 2. 
 
     For the particular case γ  = 5/3 from (A.11) a simple 
formula which has been used in calculations follows:  
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